Strona korzysta z plików cookies w celu realizacji usług i zgodnie z Polityką Plików Cookies.



29.08.2016

Z koncentryka na Ethernet

Konwertery Panasonic
25.08.2016

Coraz wydajniejsze

QNAP TVS-x82 / TVS-x82T
24.08.2016

PLNOG17 odbędzie sie w...

Kulisy Euro 2016 i dziennikarz muzyczny Hirek Wrona na konferencji telekomunikacyjnej...
23.08.2016

Integracja usług

F5 BIG-IP 12.1, BIG-IQ CM 5.0
19.08.2016

Pełna ochrona

Sophos Clean
16.08.2016

Dla smartfonów i tabletów

Logitech K780 Multi-De­vice Wireless Keyboard
11.08.2016

Canon wielu funkcji

imageRUNNER ADVANCE C5500
09.08.2016

Monitoring wizyjny

Axis Camera Station
04.08.2016

Lepszy kontakt

InsERT nexo 11

Wybrane algorytmy uczenia maszynowego

Data publikacji: 02-03-2015 Autor: Marcin Szeliga
Drzewa decyzyjne można sobie...
Maszyny wektorów nośnych...
Grupowanie metodą k-średnich...

W trzecim i ostatnim artykule z serii poświęconej usłudze Azure ML przedstawione zostały wybrane algorytmy uczenia maszynowego, takie jak drzewa decyzyjne czy sieci neuronowe. Dodatkowo opisane zostały w nim sposoby korzystania z gotowych, opublikowanych jako usługi WWW modeli.

Dla uproszczenia i ułatwienia przeprowadzenia samodzielnych eksperymentów we wszystkich przykładach użyty został ten sam zbiór danych treningowych – predefiniowany zbiór Adult Census Income. Ponadto przygotowanie danych treningowych zostało ograniczone do wyeliminowania z tego zbioru kolumn education-num i fnlwgt.

Dostępne w ramach usługi Azure ML algorytmy zostały podzielone na trzy kategorie: algorytmy klasyfikujące, szacujące oraz grupujące. Podział ten odpowiada klasycznym technikom uczenia maszynowego:

 

  • celem klasyfikacji jest przypisanie przypadków do jednej ze zdefiniowanych klas – np. ocena klientów pod kątem ich ryzyka kredytowego i przypisanie ich do grup klientów niskiego, średniego lub wysokiego ryzyka;
  • szacowanie (regresja) jest podobną do klasyfikacji techniką eksploracji danych, ale w jej przypadku przewidywane wartości są ciągłe, a nie dyskretne, i nie muszą należeć do określonego zbioru. W praktyce szacowanie jest często wykorzystywane do klasyfikacji – zamiast przypisywać przypadki do poszczególnych klas (np. klasyfikować potencjalnych kredytobiorców jako ryzykownych lub godnych zaufania), ocenia się stopień ryzyka (w skali od 0 do 100%) udzielenia im pożyczki;
  • grupowanie (klastrowanie) polega na podzieleniu różnorodnych przypadków na określoną liczbę jednorodnych grup i w przeciwieństwie do wcześniej przedstawionych technik eksploracji danych jest techniką nienadzorowaną, co oznacza, że żadna zmienna nie występuje po prawej stronie równania (nie ma tzw. zmiennej objaśnianej).

 

Ponieważ usługa Azure ML nie umożliwia odczytania zawartości przetrenowanych modeli (np. zbudowanych drzew decyzyjnych czy znalezionych formuł regresji), jej zastosowania są wyłącznie predykcyjne (gotowe modele są używane do klasyfikacji, szacowania bądź grupowania danych), a nie deskrypcyjne (usługa ta nie może być stosowana do wyjaśniania ukrytych w danych treningowych zależności).

> Klasyfikacja

Klasyfikacja polega na uzupełnieniu nieznanej wartości zmiennej objaśnianej (wyjściowej) na podstawie zależności pomiędzy tą zmienną a zmiennymi wejściowymi (objaśniającymi) znalezionymi przez algorytm w danych treningowych. Zmienna ta musi być zmienną dyskretną, a więc będzie przyjmowała jedną ze zdefiniowanych (występujących w danych treningowych) wartości (używając terminologii uczenia maszynowego, mówi się, że wartość zmiennej będzie należała do jednej z predefiniowanych klas). W zależności od liczby możliwych wartości tej zmiennej algorytmy klasyfikacji zostały podzielone na dwie grupy:

Pełna treść artykułu jest dostępna w papierowym wydaniu pisma.

.

Transmisje online zapewnia: StreamOnline

All rights reserved © 2013 Presscom / Miesięcznik "IT Professional"