Strona korzysta z plików cookies w celu realizacji usług i zgodnie z Polityką Plików Cookies.



11.12.2017

Dla biznesu

BenQ MH760
07.12.2017

Pamięć masowa SDS

SUSE Enterprise Storage 5
05.12.2017

Bezpieczna platforma

Red Hat OpenStack Platform 12
30.11.2017

ITewolucja w bezpieczeństwie....

9 listopada w katowickim hotelu Novotel odbyła się kolejna odsłona konferencji z cyklu...
28.11.2017

Smukle i elegancko

HP Spectre 13 i x360
23.11.2017

Z IEEE 802.3bz

Przełączniki Netgear
21.11.2017

4K z USB-C

EIZO FlexScan EV2785
16.11.2017

Wielofunkcyjne MFP

Canon imageRUNNER ADVANCE C256i, C356i oraz C356P
14.11.2017

Fabryka Przyszłości w drodze...

W dniach 25 i 26 października we Wrocławiu odbyła się czwarta edycja konferencji...

Uczenie maszynowe – modele rekomendujące

Data publikacji: 21-09-2015 Autor: Marcin Szeliga
Widoczna w lewym dolnym rogu...

Zadaniem modeli rekomendujących jest znalezienie, na podstawie cech przedmiotów i przeszłych zachowań klientów, przedmiotów, które z największym prawdopodobieństwem zainteresują daną osobę. Przedstawiamy zasadę działania tego typu mechanizmów na przykładzie hybrydowego modelu rekomendującego restauracje.

Modele rekomendujące są powszechnie używane m.in. do wybierania wyświetlanych reklam w serwisach społecznościach, do sugerowania produktów w e-sklepach (takich jak Amazon) oraz do wybierania płatnych odnośników zwracanych przez wyszukiwarki internetowe. Artykuł przedstawia zasady działania modeli rekomendujących na przykładzie hybrydowego modelu rekomendującego restauracje. Podobnie jak w przypadku wcześniejszych artykułów dotyczących modeli uczenia maszynowego, opisywany przykład został stworzony w środowisku Azure ML.

> RÓŻNE SPOSOBY GENEROWANIA REKOMENDACJI

Zadaniem modelu rekomendującego jest uzupełnienie brakujących ocen – zauważmy, że jeżeli będziemy wiedzieli, jak dana osoba oceniłaby poszczególne restauracje, będziemy mogli zarekomendować jej te, które spodobałyby się danej osobie najbardziej. Najczęściej model zwraca rekomendacje uporządkowane malejąco względem obliczonej oceny, czyli jako pierwsza zwrócona zostanie restauracja, którą dany użytkownik oceniłby najwyżej. W zrozumieniu rozwiązywanego problemu pomoże nam tabela 1.

Zadanie to można rozwiązać na trzy sposoby:

1. Metoda content-based filtering wymaga uzupełnienia danych źródłowych o cechy produktu, które mają wpływ na jego ocenę. Dodatkowo oprócz profilu produktów wykorzystane są w niej profile użytkowników (patrz tabela 2).
2. Metoda collaborative filtering opiera się na założeniu, że jeżeli kilka osób tak samo oceniło te same produkty, to prawdopodobnie ich oceny innych produktów również będą do siebie zbliżone. W przeciwieństwie do poprzedniej metody podejście to nie wymaga tworzenia i wypełniania wartościami listy atrybutów produktów.
3. Metoda hybrydowa łączy obie powyższe metody. Dostępny na platformie Azure Machine Learning moduł Matchbox Recommender jest właśnie przykładem rozwiązania hybrydowego, łączącego filtrowanie na podstawie cech z filtrowaniem wspólnym.

Pełna treść artykułu jest dostępna w papierowym wydaniu pisma.

.

Transmisje online zapewnia: StreamOnline

All rights reserved © 2013 Presscom / Miesięcznik "IT Professional"